direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C23.23D14, C24.70D14, (C23×C4)⋊4D7, (C23×C28)⋊4C2, (C22×C4)⋊43D14, D14⋊C4⋊41C22, (C2×C28).704C23, (C2×C14).287C24, Dic7⋊C4⋊44C22, (C22×C28)⋊56C22, (C22×C14).205D4, C14.133(C22×D4), C23.91(C7⋊D4), C23.D7⋊55C22, C22.82(C4○D28), C14⋊4(C22.D4), (C23×D7).74C22, C22.302(C23×D7), C23.233(C22×D7), (C23×C14).109C22, (C22×C14).416C23, (C2×Dic7).149C23, (C22×D7).125C23, (C22×Dic7).161C22, (C2×D14⋊C4)⋊13C2, C2.70(C2×C4○D28), C14.62(C2×C4○D4), C2.6(C22×C7⋊D4), C7⋊5(C2×C22.D4), (C2×Dic7⋊C4)⋊18C2, (C2×C14).574(C2×D4), (C2×C23.D7)⋊22C2, (C2×C4).657(C22×D7), (C22×C7⋊D4).13C2, C22.103(C2×C7⋊D4), (C2×C14).113(C4○D4), (C2×C7⋊D4).136C22, SmallGroup(448,1242)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1412 in 342 conjugacy classes, 127 normal (17 characteristic)
C1, C2, C2 [×6], C2 [×6], C4 [×10], C22, C22 [×10], C22 [×22], C7, C2×C4 [×4], C2×C4 [×24], D4 [×8], C23, C23 [×6], C23 [×12], D7 [×2], C14, C14 [×6], C14 [×4], C22⋊C4 [×12], C4⋊C4 [×8], C22×C4 [×6], C22×C4 [×7], C2×D4 [×8], C24, C24, Dic7 [×6], C28 [×4], D14 [×10], C2×C14, C2×C14 [×10], C2×C14 [×12], C2×C22⋊C4 [×3], C2×C4⋊C4 [×2], C22.D4 [×8], C23×C4, C22×D4, C2×Dic7 [×6], C2×Dic7 [×6], C7⋊D4 [×8], C2×C28 [×4], C2×C28 [×12], C22×D7 [×2], C22×D7 [×6], C22×C14, C22×C14 [×6], C22×C14 [×4], C2×C22.D4, Dic7⋊C4 [×8], D14⋊C4 [×8], C23.D7 [×4], C22×Dic7, C22×Dic7 [×2], C2×C7⋊D4 [×4], C2×C7⋊D4 [×4], C22×C28 [×6], C22×C28 [×4], C23×D7, C23×C14, C2×Dic7⋊C4 [×2], C2×D14⋊C4 [×2], C23.23D14 [×8], C2×C23.D7, C22×C7⋊D4, C23×C28, C2×C23.23D14
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C4○D4 [×4], C24, D14 [×7], C22.D4 [×4], C22×D4, C2×C4○D4 [×2], C7⋊D4 [×4], C22×D7 [×7], C2×C22.D4, C4○D28 [×4], C2×C7⋊D4 [×6], C23×D7, C23.23D14 [×4], C2×C4○D28 [×2], C22×C7⋊D4, C2×C23.23D14
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=d, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce13 >
(1 214)(2 215)(3 216)(4 217)(5 218)(6 219)(7 220)(8 221)(9 222)(10 223)(11 224)(12 197)(13 198)(14 199)(15 200)(16 201)(17 202)(18 203)(19 204)(20 205)(21 206)(22 207)(23 208)(24 209)(25 210)(26 211)(27 212)(28 213)(29 127)(30 128)(31 129)(32 130)(33 131)(34 132)(35 133)(36 134)(37 135)(38 136)(39 137)(40 138)(41 139)(42 140)(43 113)(44 114)(45 115)(46 116)(47 117)(48 118)(49 119)(50 120)(51 121)(52 122)(53 123)(54 124)(55 125)(56 126)(57 100)(58 101)(59 102)(60 103)(61 104)(62 105)(63 106)(64 107)(65 108)(66 109)(67 110)(68 111)(69 112)(70 85)(71 86)(72 87)(73 88)(74 89)(75 90)(76 91)(77 92)(78 93)(79 94)(80 95)(81 96)(82 97)(83 98)(84 99)(141 183)(142 184)(143 185)(144 186)(145 187)(146 188)(147 189)(148 190)(149 191)(150 192)(151 193)(152 194)(153 195)(154 196)(155 169)(156 170)(157 171)(158 172)(159 173)(160 174)(161 175)(162 176)(163 177)(164 178)(165 179)(166 180)(167 181)(168 182)
(1 172)(2 173)(3 174)(4 175)(5 176)(6 177)(7 178)(8 179)(9 180)(10 181)(11 182)(12 183)(13 184)(14 185)(15 186)(16 187)(17 188)(18 189)(19 190)(20 191)(21 192)(22 193)(23 194)(24 195)(25 196)(26 169)(27 170)(28 171)(29 81)(30 82)(31 83)(32 84)(33 57)(34 58)(35 59)(36 60)(37 61)(38 62)(39 63)(40 64)(41 65)(42 66)(43 67)(44 68)(45 69)(46 70)(47 71)(48 72)(49 73)(50 74)(51 75)(52 76)(53 77)(54 78)(55 79)(56 80)(85 116)(86 117)(87 118)(88 119)(89 120)(90 121)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)(97 128)(98 129)(99 130)(100 131)(101 132)(102 133)(103 134)(104 135)(105 136)(106 137)(107 138)(108 139)(109 140)(110 113)(111 114)(112 115)(141 197)(142 198)(143 199)(144 200)(145 201)(146 202)(147 203)(148 204)(149 205)(150 206)(151 207)(152 208)(153 209)(154 210)(155 211)(156 212)(157 213)(158 214)(159 215)(160 216)(161 217)(162 218)(163 219)(164 220)(165 221)(166 222)(167 223)(168 224)
(1 158)(2 159)(3 160)(4 161)(5 162)(6 163)(7 164)(8 165)(9 166)(10 167)(11 168)(12 141)(13 142)(14 143)(15 144)(16 145)(17 146)(18 147)(19 148)(20 149)(21 150)(22 151)(23 152)(24 153)(25 154)(26 155)(27 156)(28 157)(29 110)(30 111)(31 112)(32 85)(33 86)(34 87)(35 88)(36 89)(37 90)(38 91)(39 92)(40 93)(41 94)(42 95)(43 96)(44 97)(45 98)(46 99)(47 100)(48 101)(49 102)(50 103)(51 104)(52 105)(53 106)(54 107)(55 108)(56 109)(57 117)(58 118)(59 119)(60 120)(61 121)(62 122)(63 123)(64 124)(65 125)(66 126)(67 127)(68 128)(69 129)(70 130)(71 131)(72 132)(73 133)(74 134)(75 135)(76 136)(77 137)(78 138)(79 139)(80 140)(81 113)(82 114)(83 115)(84 116)(169 211)(170 212)(171 213)(172 214)(173 215)(174 216)(175 217)(176 218)(177 219)(178 220)(179 221)(180 222)(181 223)(182 224)(183 197)(184 198)(185 199)(186 200)(187 201)(188 202)(189 203)(190 204)(191 205)(192 206)(193 207)(194 208)(195 209)(196 210)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 94 144 55)(2 54 145 93)(3 92 146 53)(4 52 147 91)(5 90 148 51)(6 50 149 89)(7 88 150 49)(8 48 151 87)(9 86 152 47)(10 46 153 85)(11 112 154 45)(12 44 155 111)(13 110 156 43)(14 42 157 109)(15 108 158 41)(16 40 159 107)(17 106 160 39)(18 38 161 105)(19 104 162 37)(20 36 163 103)(21 102 164 35)(22 34 165 101)(23 100 166 33)(24 32 167 99)(25 98 168 31)(26 30 141 97)(27 96 142 29)(28 56 143 95)(57 180 131 208)(58 207 132 179)(59 178 133 206)(60 205 134 177)(61 176 135 204)(62 203 136 175)(63 174 137 202)(64 201 138 173)(65 172 139 200)(66 199 140 171)(67 170 113 198)(68 197 114 169)(69 196 115 224)(70 223 116 195)(71 194 117 222)(72 221 118 193)(73 192 119 220)(74 219 120 191)(75 190 121 218)(76 217 122 189)(77 188 123 216)(78 215 124 187)(79 186 125 214)(80 213 126 185)(81 184 127 212)(82 211 128 183)(83 182 129 210)(84 209 130 181)
G:=sub<Sym(224)| (1,214)(2,215)(3,216)(4,217)(5,218)(6,219)(7,220)(8,221)(9,222)(10,223)(11,224)(12,197)(13,198)(14,199)(15,200)(16,201)(17,202)(18,203)(19,204)(20,205)(21,206)(22,207)(23,208)(24,209)(25,210)(26,211)(27,212)(28,213)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,137)(40,138)(41,139)(42,140)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(81,96)(82,97)(83,98)(84,99)(141,183)(142,184)(143,185)(144,186)(145,187)(146,188)(147,189)(148,190)(149,191)(150,192)(151,193)(152,194)(153,195)(154,196)(155,169)(156,170)(157,171)(158,172)(159,173)(160,174)(161,175)(162,176)(163,177)(164,178)(165,179)(166,180)(167,181)(168,182), (1,172)(2,173)(3,174)(4,175)(5,176)(6,177)(7,178)(8,179)(9,180)(10,181)(11,182)(12,183)(13,184)(14,185)(15,186)(16,187)(17,188)(18,189)(19,190)(20,191)(21,192)(22,193)(23,194)(24,195)(25,196)(26,169)(27,170)(28,171)(29,81)(30,82)(31,83)(32,84)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,113)(111,114)(112,115)(141,197)(142,198)(143,199)(144,200)(145,201)(146,202)(147,203)(148,204)(149,205)(150,206)(151,207)(152,208)(153,209)(154,210)(155,211)(156,212)(157,213)(158,214)(159,215)(160,216)(161,217)(162,218)(163,219)(164,220)(165,221)(166,222)(167,223)(168,224), (1,158)(2,159)(3,160)(4,161)(5,162)(6,163)(7,164)(8,165)(9,166)(10,167)(11,168)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,150)(22,151)(23,152)(24,153)(25,154)(26,155)(27,156)(28,157)(29,110)(30,111)(31,112)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,101)(49,102)(50,103)(51,104)(52,105)(53,106)(54,107)(55,108)(56,109)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,139)(80,140)(81,113)(82,114)(83,115)(84,116)(169,211)(170,212)(171,213)(172,214)(173,215)(174,216)(175,217)(176,218)(177,219)(178,220)(179,221)(180,222)(181,223)(182,224)(183,197)(184,198)(185,199)(186,200)(187,201)(188,202)(189,203)(190,204)(191,205)(192,206)(193,207)(194,208)(195,209)(196,210), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,94,144,55)(2,54,145,93)(3,92,146,53)(4,52,147,91)(5,90,148,51)(6,50,149,89)(7,88,150,49)(8,48,151,87)(9,86,152,47)(10,46,153,85)(11,112,154,45)(12,44,155,111)(13,110,156,43)(14,42,157,109)(15,108,158,41)(16,40,159,107)(17,106,160,39)(18,38,161,105)(19,104,162,37)(20,36,163,103)(21,102,164,35)(22,34,165,101)(23,100,166,33)(24,32,167,99)(25,98,168,31)(26,30,141,97)(27,96,142,29)(28,56,143,95)(57,180,131,208)(58,207,132,179)(59,178,133,206)(60,205,134,177)(61,176,135,204)(62,203,136,175)(63,174,137,202)(64,201,138,173)(65,172,139,200)(66,199,140,171)(67,170,113,198)(68,197,114,169)(69,196,115,224)(70,223,116,195)(71,194,117,222)(72,221,118,193)(73,192,119,220)(74,219,120,191)(75,190,121,218)(76,217,122,189)(77,188,123,216)(78,215,124,187)(79,186,125,214)(80,213,126,185)(81,184,127,212)(82,211,128,183)(83,182,129,210)(84,209,130,181)>;
G:=Group( (1,214)(2,215)(3,216)(4,217)(5,218)(6,219)(7,220)(8,221)(9,222)(10,223)(11,224)(12,197)(13,198)(14,199)(15,200)(16,201)(17,202)(18,203)(19,204)(20,205)(21,206)(22,207)(23,208)(24,209)(25,210)(26,211)(27,212)(28,213)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,137)(40,138)(41,139)(42,140)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(81,96)(82,97)(83,98)(84,99)(141,183)(142,184)(143,185)(144,186)(145,187)(146,188)(147,189)(148,190)(149,191)(150,192)(151,193)(152,194)(153,195)(154,196)(155,169)(156,170)(157,171)(158,172)(159,173)(160,174)(161,175)(162,176)(163,177)(164,178)(165,179)(166,180)(167,181)(168,182), (1,172)(2,173)(3,174)(4,175)(5,176)(6,177)(7,178)(8,179)(9,180)(10,181)(11,182)(12,183)(13,184)(14,185)(15,186)(16,187)(17,188)(18,189)(19,190)(20,191)(21,192)(22,193)(23,194)(24,195)(25,196)(26,169)(27,170)(28,171)(29,81)(30,82)(31,83)(32,84)(33,57)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(41,65)(42,66)(43,67)(44,68)(45,69)(46,70)(47,71)(48,72)(49,73)(50,74)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131)(101,132)(102,133)(103,134)(104,135)(105,136)(106,137)(107,138)(108,139)(109,140)(110,113)(111,114)(112,115)(141,197)(142,198)(143,199)(144,200)(145,201)(146,202)(147,203)(148,204)(149,205)(150,206)(151,207)(152,208)(153,209)(154,210)(155,211)(156,212)(157,213)(158,214)(159,215)(160,216)(161,217)(162,218)(163,219)(164,220)(165,221)(166,222)(167,223)(168,224), (1,158)(2,159)(3,160)(4,161)(5,162)(6,163)(7,164)(8,165)(9,166)(10,167)(11,168)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,150)(22,151)(23,152)(24,153)(25,154)(26,155)(27,156)(28,157)(29,110)(30,111)(31,112)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,101)(49,102)(50,103)(51,104)(52,105)(53,106)(54,107)(55,108)(56,109)(57,117)(58,118)(59,119)(60,120)(61,121)(62,122)(63,123)(64,124)(65,125)(66,126)(67,127)(68,128)(69,129)(70,130)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,139)(80,140)(81,113)(82,114)(83,115)(84,116)(169,211)(170,212)(171,213)(172,214)(173,215)(174,216)(175,217)(176,218)(177,219)(178,220)(179,221)(180,222)(181,223)(182,224)(183,197)(184,198)(185,199)(186,200)(187,201)(188,202)(189,203)(190,204)(191,205)(192,206)(193,207)(194,208)(195,209)(196,210), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,94,144,55)(2,54,145,93)(3,92,146,53)(4,52,147,91)(5,90,148,51)(6,50,149,89)(7,88,150,49)(8,48,151,87)(9,86,152,47)(10,46,153,85)(11,112,154,45)(12,44,155,111)(13,110,156,43)(14,42,157,109)(15,108,158,41)(16,40,159,107)(17,106,160,39)(18,38,161,105)(19,104,162,37)(20,36,163,103)(21,102,164,35)(22,34,165,101)(23,100,166,33)(24,32,167,99)(25,98,168,31)(26,30,141,97)(27,96,142,29)(28,56,143,95)(57,180,131,208)(58,207,132,179)(59,178,133,206)(60,205,134,177)(61,176,135,204)(62,203,136,175)(63,174,137,202)(64,201,138,173)(65,172,139,200)(66,199,140,171)(67,170,113,198)(68,197,114,169)(69,196,115,224)(70,223,116,195)(71,194,117,222)(72,221,118,193)(73,192,119,220)(74,219,120,191)(75,190,121,218)(76,217,122,189)(77,188,123,216)(78,215,124,187)(79,186,125,214)(80,213,126,185)(81,184,127,212)(82,211,128,183)(83,182,129,210)(84,209,130,181) );
G=PermutationGroup([(1,214),(2,215),(3,216),(4,217),(5,218),(6,219),(7,220),(8,221),(9,222),(10,223),(11,224),(12,197),(13,198),(14,199),(15,200),(16,201),(17,202),(18,203),(19,204),(20,205),(21,206),(22,207),(23,208),(24,209),(25,210),(26,211),(27,212),(28,213),(29,127),(30,128),(31,129),(32,130),(33,131),(34,132),(35,133),(36,134),(37,135),(38,136),(39,137),(40,138),(41,139),(42,140),(43,113),(44,114),(45,115),(46,116),(47,117),(48,118),(49,119),(50,120),(51,121),(52,122),(53,123),(54,124),(55,125),(56,126),(57,100),(58,101),(59,102),(60,103),(61,104),(62,105),(63,106),(64,107),(65,108),(66,109),(67,110),(68,111),(69,112),(70,85),(71,86),(72,87),(73,88),(74,89),(75,90),(76,91),(77,92),(78,93),(79,94),(80,95),(81,96),(82,97),(83,98),(84,99),(141,183),(142,184),(143,185),(144,186),(145,187),(146,188),(147,189),(148,190),(149,191),(150,192),(151,193),(152,194),(153,195),(154,196),(155,169),(156,170),(157,171),(158,172),(159,173),(160,174),(161,175),(162,176),(163,177),(164,178),(165,179),(166,180),(167,181),(168,182)], [(1,172),(2,173),(3,174),(4,175),(5,176),(6,177),(7,178),(8,179),(9,180),(10,181),(11,182),(12,183),(13,184),(14,185),(15,186),(16,187),(17,188),(18,189),(19,190),(20,191),(21,192),(22,193),(23,194),(24,195),(25,196),(26,169),(27,170),(28,171),(29,81),(30,82),(31,83),(32,84),(33,57),(34,58),(35,59),(36,60),(37,61),(38,62),(39,63),(40,64),(41,65),(42,66),(43,67),(44,68),(45,69),(46,70),(47,71),(48,72),(49,73),(50,74),(51,75),(52,76),(53,77),(54,78),(55,79),(56,80),(85,116),(86,117),(87,118),(88,119),(89,120),(90,121),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127),(97,128),(98,129),(99,130),(100,131),(101,132),(102,133),(103,134),(104,135),(105,136),(106,137),(107,138),(108,139),(109,140),(110,113),(111,114),(112,115),(141,197),(142,198),(143,199),(144,200),(145,201),(146,202),(147,203),(148,204),(149,205),(150,206),(151,207),(152,208),(153,209),(154,210),(155,211),(156,212),(157,213),(158,214),(159,215),(160,216),(161,217),(162,218),(163,219),(164,220),(165,221),(166,222),(167,223),(168,224)], [(1,158),(2,159),(3,160),(4,161),(5,162),(6,163),(7,164),(8,165),(9,166),(10,167),(11,168),(12,141),(13,142),(14,143),(15,144),(16,145),(17,146),(18,147),(19,148),(20,149),(21,150),(22,151),(23,152),(24,153),(25,154),(26,155),(27,156),(28,157),(29,110),(30,111),(31,112),(32,85),(33,86),(34,87),(35,88),(36,89),(37,90),(38,91),(39,92),(40,93),(41,94),(42,95),(43,96),(44,97),(45,98),(46,99),(47,100),(48,101),(49,102),(50,103),(51,104),(52,105),(53,106),(54,107),(55,108),(56,109),(57,117),(58,118),(59,119),(60,120),(61,121),(62,122),(63,123),(64,124),(65,125),(66,126),(67,127),(68,128),(69,129),(70,130),(71,131),(72,132),(73,133),(74,134),(75,135),(76,136),(77,137),(78,138),(79,139),(80,140),(81,113),(82,114),(83,115),(84,116),(169,211),(170,212),(171,213),(172,214),(173,215),(174,216),(175,217),(176,218),(177,219),(178,220),(179,221),(180,222),(181,223),(182,224),(183,197),(184,198),(185,199),(186,200),(187,201),(188,202),(189,203),(190,204),(191,205),(192,206),(193,207),(194,208),(195,209),(196,210)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,94,144,55),(2,54,145,93),(3,92,146,53),(4,52,147,91),(5,90,148,51),(6,50,149,89),(7,88,150,49),(8,48,151,87),(9,86,152,47),(10,46,153,85),(11,112,154,45),(12,44,155,111),(13,110,156,43),(14,42,157,109),(15,108,158,41),(16,40,159,107),(17,106,160,39),(18,38,161,105),(19,104,162,37),(20,36,163,103),(21,102,164,35),(22,34,165,101),(23,100,166,33),(24,32,167,99),(25,98,168,31),(26,30,141,97),(27,96,142,29),(28,56,143,95),(57,180,131,208),(58,207,132,179),(59,178,133,206),(60,205,134,177),(61,176,135,204),(62,203,136,175),(63,174,137,202),(64,201,138,173),(65,172,139,200),(66,199,140,171),(67,170,113,198),(68,197,114,169),(69,196,115,224),(70,223,116,195),(71,194,117,222),(72,221,118,193),(73,192,119,220),(74,219,120,191),(75,190,121,218),(76,217,122,189),(77,188,123,216),(78,215,124,187),(79,186,125,214),(80,213,126,185),(81,184,127,212),(82,211,128,183),(83,182,129,210),(84,209,130,181)])
Matrix representation ►G ⊆ GL5(𝔽29)
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 7 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 13 | 14 |
1 | 0 | 0 | 0 | 0 |
0 | 18 | 8 | 0 | 0 |
0 | 21 | 11 | 0 | 0 |
0 | 0 | 0 | 4 | 26 |
0 | 0 | 0 | 25 | 25 |
G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,7,0,0,0,0,1],[1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,0,28,0,0,0,28,0,0,0,0,0,0,2,13,0,0,0,0,14],[1,0,0,0,0,0,18,21,0,0,0,8,11,0,0,0,0,0,4,25,0,0,0,26,25] >;
124 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4H | 4I | ··· | 4N | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 28 | 28 | 2 | ··· | 2 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
124 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | C4○D28 |
kernel | C2×C23.23D14 | C2×Dic7⋊C4 | C2×D14⋊C4 | C23.23D14 | C2×C23.D7 | C22×C7⋊D4 | C23×C28 | C22×C14 | C23×C4 | C2×C14 | C22×C4 | C24 | C23 | C22 |
# reps | 1 | 2 | 2 | 8 | 1 | 1 | 1 | 4 | 3 | 8 | 18 | 3 | 24 | 48 |
In GAP, Magma, Sage, TeX
C_2\times C_2^3._{23}D_{14}
% in TeX
G:=Group("C2xC2^3.23D14");
// GroupNames label
G:=SmallGroup(448,1242);
// by ID
G=gap.SmallGroup(448,1242);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,675,136,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=d,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^13>;
// generators/relations